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Abstract A sensitive imidazole based fluorescent sensor
like 4, 5-diphenyl-2(E)-styryl-1H-imidazole, for ZnO has
been designed and synthesized via simple steps. The ab-
sorption, fluorescence, SEM, EDX and IR studies indicate
that imidazole derivative is bound on the surface of ZnO
semiconductor. Based on photo-induced electron transfer
(PET) mechanism, fluorescent enhancement has been
explained and apparent binding constant has been calculat-
ed. Ligand adsorption on ZnO nanoparticle lowers of the
HOMO and LUMO energy levels of imidazole derivative
and the chemical affinity between the nitrogen atom of the
imidazole and zinc ion on the surface of the nano oxide may
be a reason for strong adsorption of the ligand on nano-
particle. The electron injection from photo excited imidazole
derivative to the ZnO conduction band (S*→S+ + eCB

−)
accounts for the enhanced fluorescence.
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Introduction

Semiconductor nanoparticles attract considerable attention
owing to their unique size dependent optical and electronic
properties [1, 2] and these materials find potential biotechno-
logical applications like luminescence tagging, immunoassay,
drug delivery and cellular imaging [3–5]. ZnO is a fluorescent
semiconductor material, the nanocrystals exhibit better

chemical stability and safety relative to other toxic semicon-
ductor nanocrystals. Thus, fluorescent ZnO nanocrystals have
become a bio friendly candidate for biological technology
application [6, 7]. Unique ZnO nanorods substrate has been
grown to immobilize a large amount of probe molecules and
also to directly amplify the microarray fluorescent signals in
detection of two important cancer biomarkers, carcinoem-
bryonic antigen (CEA) and α-fetoprotein (AFP), achieving a
detection limit of 1 pg L−1 in human serum, which is compar-
ative to or lower than that of ELISA [8]. Arylimidazole
derivatives play important role in materials science due to
their optoelectronic properties [9–12]. They are used as
ligands for the synthesis of metal complexes of ruthenium
(II), copper(II), cobalt(II), nickel(II), manganese(II), iridium
(III) and several lanthanides for nonlinear optical (NLO)
applications. The reported visible light excited Zn2+ fluores-
cent sensors are mainly derived from bulk xanthenone fluo-
rophores, like fluorescein and rhodamine [13, 14].
Fluorophore of smaller aromatic plane, such as 4-amino-7-
nitro-2, 1,3-benzoxadiazole has also been shown as visible
light excited fluorescent Zn2+ sensor [15]. The design and
synthesis of fluorescent probes with high selectivity and sen-
sitivity is a vibrant field of supramolecular chemistry for their
fundamental role in medical, environmental and biological
applications [16]. Although there are many fluorescent probes
synthesized to detect zinc ion [16–18], there is none for ZnO
nanoparticle; study on the fluorescence enhancement of bio-
active imidazole derivatives [19] by ZnO nanoparticles has
not been reported till now. And this is the first attempt of using
imidazole derivative as a photosensor for ZnO nanoparticles.
The highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) potentials for the
designed sensor must match with the conduction and valence
band edges of the semiconductor nanocrystals. Quenching of
fluorescence by various ligands, viz., phycoerythrin by TiO2,
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AuTiO2 and AgTiO2 [20], meso-tetraphenylporphyrin by
TiO2 [21], meso-tetrakis(4-sulfonatophenyl)porphyrins by
TiO2 [22], calf thymus-DNA by TiO2 [23], porphyrins by
TiO2 [24] and CdS [25], phycocyanin by TiO2 [25], bovine
serum albumin by CdS [26] and TiO2 [27], xanthine by CdS
[28], polythiophene by TiO2 [29] and bovine serum albumin
by ZnO [30] have been reported. This is the first report of
enhancement of fluorescence by ZnO nanoparticle. The ob-
served fluorescence enhancement is unique to study the inter-
action between ZnO nanomaterial and imidazole derivative, to
infer the association and also the energy transfer between them
(Scheme 1). The imidazole-ZnO nanoparticle binding con-
stant has been determined using the relationship (I−I0)/
I0−[Q]. Scanning electron micrograph (SEM) and energy
dispersive X-ray (EDX) spectrum confirms the adsorption of
imidazole derivative on ZnO nanoparticle.

Materials and Methods

Materials

Benzil, cinnamaldehyde and all other reagents used were of
analytical grade. The nanoparticulate ZnO used was that
supplied by Sigma-Aldrich. It is of wurtzite structure with
average crystallite size (D) and surface area (S) as 32 nm and
33 m2 g−1, respectively [31].

Synthesis of the 4,5-diphenyl-2(E)-styryl-1H-imidazole

The experimental procedure used was the same as described
in our recent works [32–41]. The imidazole derivative was
synthesized by three components assembling of benzil
(40 mmol), ammonium acetate (30 mmol) and cinnamalde-
hyde (30 mmol). The three components were refluxed in
ethanol for 24 h at 80 °C. The reaction mixture was extracted
with dichloromethane and purified by column chromatogra-
phy using hexane-ethyl acetate (9:1) as the eluent. Yield:
55 %. mp: 260 °C, Anal. calcd. for C23H18N2: C: 85.68; H:
5.63; N: 8.69. Found: C: 84.89; H: 5.23; N: 7.93. 1H NMR

(400 MHz, CDCl3): δ 9.87 (s, 1H), 8.09 (d, 1H), 8.01 (d, 1H),
7.98–6.79 (m, 15H). 13C (100 MHz, CDCl3): δ 145.56,
136.48, 133.40–125.49 (Aromatic carbons). MS: m/e: obsd:
322.15, calcd: 321.68.

Measurements

The 1H and 13C NMR spectra of the ligand were recorded on a
Bruker 400MHzNMR instrument and the mass spectrumwas
obtained using Agilant 1100 mass spectrometer. The fluores-
cence measurements were carried out with a Perkin Elmer
LS55 spectrofluorimeter. The excitation wavelength was
305 nm and the emission was monitored at 380 nm. The
excitation and emission slit width (each 10 nm) and scan rate
(600 nm min−1) were kept unaltered for all the measurements.
The sample was deoxygenated by bubbling with pure nitrogen
gas. The absorption spectral measurements were recorded by
using a Perkin Elmer Lambda 35 spectrophotometer. An

Scheme 1 Photoinduced charge injection and charge separation

Fig. 1 Absorption spectra of imidazole derivative in presence and
absence of ZnO nanoparticle

Scheme 2 Electron-donating energy level of imidazole

1048 J Fluoresc (2012) 22:1047–1053



ethanolic solution of the imidazole derivative of required
concentration (1×10−8 M) was mixed with nanoparticles dis-
persed in ethanol at different loading and the absorbance and
emission spectra were recorded. The nanocrystals were dis-
persed under sonication in ethanol using ethylene glycol fol-
lowed by dilution with ethanol. The SEM and EDS spectra
have been recorded by using JEOL-JSM 5610 LV.

Results and Discussion

Absorption Characteristics of Imidazole Derivative-ZnO
Nanoparticle

The absorption spectra of the imidazole derivative in pres-
ence of ZnO nanoparticles dispersed at different loading and
also in their absence are displayed in Fig. 1. The nano-
particles enhance the absorbance of imidazole derivative
remarkably without shifting its absorption maximum at
305 nm. This indicates that the nanocrystals do not modify
the excitation process of the ligand. The enhanced absorp-
tion at 305 nm observed with the dispersed semiconductor
nanoparticle is due to adsorption of the imidazole derivative
on semiconductor surface (Scheme 2). This is because of

effective transfer of electron from the excited state of the
imidazole derivative to the conduction band of the semicon-
ductor nanoparticle (PET mechanism).

FT-IR Characteristics of Imidazole Derivative-ZnO
Nanoparticle

The UV-visible absorption spectroscopy is not sufficient to
throw light on the molecular structure of imidazole derivative
adsorbed on surfaces of nanoparticles. Fourier transform in-
frared (FT-IR) technique may provide further information
about the nature of interaction between the organic molecule
and the ZnO surface. Fig. 2 shows the FT-IR spectrum of
imidazole derivative (broken line) and imidazole derivative
bound to the ZnO nanoparticle (solid line). The spectrum of
pure imidazole derivative shows the >C 0 N stretching vibra-
tion at 1596 cm−1. This band is shifted from 1596 cm−1 to
1633 cm−1 for imidazole derivative bound to the ZnO nano-
particle. This confirms that the imidazole derivative is
adsorbed on the surface of the ZnO nanoparticle.

Scanning Electron Micrograph (SEM) and Energy
Dispersive Spectrum (EDS)

Figure 3 presents the scanning electron micrographs of
imidazole derivative adsorbed ZnO nanoparticles and bare
ZnO nanocrystal. The SEM images show that imidazole
adsorption does not significantly modify the morphology
of the ZnO nanocrystal. The EDS (Fig. 4) of the imidazole
treated ZnO nanoparticle and bare ZnO nanocrystal confirm
the adsorption of imidazole derivative on ZnO nanocrystal-
line surface.

Fluorescence Enhancement

The emission spectra of imidazole derivative in presence of
ZnO nanoparticle dispersed at different loading and also in
their absence are displayed in Fig. 5. The nanoparticle
enhances the emission of imidazole derivative remarkably

Fig. 3 a SEM image of ligand
adsorbed ZnO nanoparticles. b
SEM image of bare ZnO
nanoparticle

Fig. 2 FT-IR spectra of imidazole (broken line) and imidazole bound
with ZnO nanoparticulate (solid line)
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without shifting its emission maximum at 380 nm. This
indicates that the nanocrystal do not modify the excitation
process of the ligand. The enhanced emission at 380 nm
observed with the dispersed semiconductor nanoparticle is
due to the adsorption of the imidazole derivative on semi-
conductor surface. This is because of effective transfer of
electron from the excited state of the imidazole derivative to
the conduction band of the semiconductor nanoparticle. Fluo-
rescence enhancement arises due to formation of complex the
fluorophore–nanoparticulate ZnO and the binding constant
(K) has been calculated as 1.240×103.

Energetics

From the onset oxidation potential (Eox) and the onset
reduction potential (Ered) of the imidazole derivative,

HOMO and LUMO energy levels have been calculated
according to the following equations [42]:

HOMO ¼ �e Eox þ 4:71ð Þ eVð Þ ð1Þ

LUMO ¼ �e Ered þ 4:71ð Þ eVð Þ ð2Þ
On the basis of the relative positions of imidazole deriv-

ative and ZnO energy levels shown in Fig. 6, the electron
injection would be thermodynamically allowed from the
excited singlet of the imidazole derivative to the conduction
band of ZnO.

Figure 6 presents the HOMO and LUMO energy
levels of an isolated imidazole molecule along with the
conduction band and valence band edges of ZnO

Fig. 5 Fluorescence enhancement of imidazole derivative in the presence
and absence of various concentrations of ZnO nanoparticle

Fig. 4 a EDX spectra of ligand adsorbed ZnO nanoparticle. b EDX spectra of bare ZnO nanoparticle

Fig. 6 Electron-donating energy level of imidazole
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nanoparticle. The energy levels presented in Fig. 7 sug-
gests enhancement of fluorescence of imidazole deriva-
tive by ZnO nanocrystal. On illumination at 305 nm both
the ligand and nano semiconductor are excited. Duel
emission is expected due to LUMO→HOMO and
CB→VB electron transfer. Also possible is electron jump
from the excited ligand to the nanocrystal; the electron in
the LUMO of the excited ligand is of higher energy
compared to that in the CB of ZnO nanocrystals. This
should lead to quenching of fluorescence of imidazole
derivative. However, contrary to the expectations, en-
hancement of fluorescence is observed in presence of
ZnO nanocrystal. This may be because of the lowering
of the HOMO and LUMO energy levels of imidazole
derivative due to adsorption on ZnO nanoparticle. The
polar ZnO surface enhances the delocalisation of the π
electrons and lowers the HOMO and LUMO energy
levels due to adsorption [43]. The chemical affinity be-
tween the nitrogen atom of the imidazole and zinc ion on
the surface of the nano oxide may be a reason for strong
adsorption of the ligand on nanoparticle causes the en-
hancement (Fig. 8).

The excited state energy of the imidazole derivative, as
shown in Scheme 2, is larger than the conductance band
energy levels of nanosemiconductors [44]. This makes pos-
sible the energy transfer from the excited state of imidazole
derivative to the nanoparticle.

According to Forster’s energy transfer theory, the energy
transfer efficiency is related not only to the distance between

the acceptor and donor (r0), but also to the critical energy
transfer distance (R0). That is

E ¼ R6
0= R6

0 þ r60
� � ð3Þ

where, R0 is the critical distance when the transfer efficiency
is 50 %.

R6
0 ¼ 8:8� 10�25K2N�4 8 J ð4Þ

where, K2 is the spatial orientation factor of the dipole, N is
the refractive index of the medium, φ is the fluorescence
quantum yield of the donor and J is the overlap integral of
the fluorescence emission spectrum of the donor and the
absorption spectrum of the acceptor (Fig. 9). The value of J
can be calculated by using Eq. (5),

J ¼ F lð Þ" lð Þl4dl=F lð Þdl ð5Þ
where, F(λ) is the fluorescence intensity of the donor, ε(λ) is
molar absorptivity of the acceptor. The parameter J00.84

Fig. 9 Overlapping of fluorescence and absorption spectra of donor
and acceptor

Fig. 8 Chemical affinity between the nitrogen atom of the imidazole
and zinc ion on the surface of the nano oxide

Fig. 7 Chemical bonding interaction of imidazole derivative with ZnO
nanoparticle
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109 J (cm3 M−1) evaluated by integrating the spectral param-
eters in Eq. (5). Under these experimental conditions, the
value of E, R0 and r0 calculated was found to be about
0.228, 1.71 and 2.09 nm in all cases; the values of K2

(0 2/3) and N (0 1.3467) used are from the literature [45]
and the φ value (0 0.15) is from the present study. Obvi-
ously, the calculated value of R0 is in the range of maximal
critical distance. This is in accordance with the conditions of
Forster’s energy transfer theory [46], suggests that energy
transfer occurs between the ZnO nanoparticle and imidazole
derivative with high probability [47].

Free-Energy Change (ΔGet) for Electron Transfer Process

The thermodynamic feasibility of excited state electron
transfer reaction has been confirmed by the calculation of
free energy change by employing the well known Rehm-
Weller expression [48].

ΔGet ¼ E1=2ðoxÞ � E1=2ðredÞ � Es þ C ð6Þ

where, E(ox)
1/2 is the oxidation potential of imidazole deriv-

ative (0.14 V), E(red)
1/2 is the reduction potential of ZnO

nanoparticle, i.e., the conduction band potential of nano-
particle, Es is the excited state energy of imidazole deriva-
tive and C is the coulombic term. Since the ligand is neutral
and the solvent used is polar in nature, the coulombic term
in the above expression can be neglected [49]. The values of
ΔGet is calculated as −2.80 eV. The high negative values
indicate the thermodynamic feasibility of the electron transfer
process [50–54].

Conclusion

Imidazole derivative is adsorbed on the surface of semicon-
ductor nanoparticle through azomethine nitrogen. The con-
duction band energy position determines the electron
transfer from excited state imidazole derivative to the ZnO
nanoparticles. Based on photo-induced electron transfer
(PET) mechanism, fluorescent enhancement has been
explained and apparent binding constant has been calculat-
ed. The negative ΔGet value for ZnO nanoparticles reveals
that the electron transfer process is thermodynamically
favourable.
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